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Human brains and bodies are not hardware running software: the hardware is the software. We reason that
because the physics of artificial intelligence hardware and of human biological ‘‘hardware’’ is distinct, neuro-
morphic engineers need to be selective in the inspiration we take from neuroscience.
Prologue: Life, with lasers
On a planet far, far away, intelligent life

forms known as Lasans think, move, and

feel. They may even conduct experiments

and write scientific articles. They are, in

other words, like humans. Except, how-

ever, for one notable detail: the early an-

cestors of Lasans, flailing their way

through the deep, dark oceans of the La-

san planet, evolved the ability to produce

and detect laser radiation—which allows

them to communicate and process infor-

mation in the optical domain.

The eerie bioluminescence of Earth’s

deep sea creatures may convince you

that the Lasans’ evolutionary trajectory is

plausible. Our motivation to include La-

sans in the opening of this NeuroView is

not plausibility, however. Rather, it is to

pose the following questions. How would

the infrastructure of intelligence (i.e., Lasan

‘‘brains’’ and beyond) differ from our own?

And in what ways would they be similar?

It seems easier to answer the first ques-

tion. As our vast networks of optical tele-

communications stand testament, laser

light is an excellent way to efficiently trans-

mit information over long distances—far

better than electrical or biochemical trans-

mission. The biological hardware of Lasan

intelligence would thus not be as con-

strained by the costs of communicating in-

formation (our brains are very different—

there, communication costs account for

nearly 35 times more energy consumption

than neural computations1). This capacity

for efficient long-range communication

means that Lasans would likely evolve to
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communicate with each other directly by

their medium of thought, laser light (or

even holographically, as in Figure 1A).

What would this mean for an individual La-

san’s sense of self? Or for inventions like

language and writing?

We will halt our speculations here, but,

suffice to say, Lasan ‘‘brains,’’ not to

mention bodies and societies, would be

quite different from our own. In what

ways would they be similar? We can think

of at least two important ways.

First, the evolution of intelligence in the

Lasans’ ancestors would almost certainly

follow from the same basic need as it

did on Earth: intelligence is required to

navigate, to orchestrate motion within a

complex, dynamic environment. In other

words, intelligence would evolve to serve

the first and perhaps only purpose of

‘‘predictive control’’: predicting the future

in order to move within it. Our earthy bio-

logical intelligence first evolved from the

need to navigate and control motion while

embodied in a dynamic, complex world.

Second, the structures of Lasan thought

would likely emerge from the physics

of those thoughts’ implementation. Our

brains are the way they are because of

the physical constraints of biochemical

diffusion,ofelectricity,of thermodynamics,

etc. The intelligence of the Lasans would

likewise be shaped by the physics of,

among many other things, laser light. As

first-year biology students are taught,

form is function. Our brains and bodies

are not hardware running software—the

hardware is the software.
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The hardware is the software:
Introduction
The lives and thoughts of Lasans may be

imaginary, but the question of how their

intelligence would be different and similar

to ours is real. Understanding biological

intelligence involves understanding not

only how and why we humans think and

act the way we do but the same for

dogs, for octopi, for ants, and perhaps

even Lasans.

What are the principles of biological in-

telligence that transcend physical imple-

mentation? The purpose of this article is

not to argue that this question is important

for neuroscience (we think that most neu-

roscientists already agree it is!). Rather,

the purpose of this article is to argue that

this question should (re)define the relation-

ship between neuroscience, neuromor-

phic engineering, and artificial intelligence

(AI). As subsequent sections will develop,

our argument is essentially as follows.

(1) The physics of the substrates from

which we construct AI systems are

fundamentally different from the

physics of our brains. Although

often invisible, this physics (in the

form of hardware strengths and

constraints) has arguably been the

predominant driving force for mod-

ern AI. Neuroscience inspirations

have been less important (so far).

(2) Modern AI systems have nonethe-

less been shaped by ideas that

were (or at least could have been)

learned by studying biological
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Figure 1. The available hardware determines what and how intelligence can be engineered
(A) Deep sea creatures on a far-away planet think and communicate using light.
(B) Different physics lead to different attributes of computing hardware, such as the signal-to-noise ratio (SNR) of information-carrying signals; update rate, the
speed of the hardware’s dynamics, which affects how quickly calculations can be performed; and dimensionality, how many spatial dimensions in which the
hardware can take form. Different algorithms work formidably well in the brain and on digital electronics because they leverage the hardware at its best. We
expect that hardware-agnostic principles of intelligence would also map to unconventional hardware such as optics or analog electronics.
(C) The hardware-shaped evolution of AI algorithms. Performance breakthroughs on specific tasks have tended to rely on software that efficiently exploits the
strengths of the available computing machinery. This observation—that the best algorithms are those that best exploit the available hardware—has been made
several times before2–4 and described as ‘‘the bitter lesson’’3 and ‘‘the hardware lottery.’’4
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intelligence. Ideas that have had

an impact have, however, been

mostly physically transcendent

and not based on, e.g., the details

of human cellular biology.

(3) If future breakthroughs in AI are to

arise from neuroscience (and we

think this would be good—it would

save a tremendous amount of time,

money, and anguish), then neuro-

scientists must collaborate with AI

researchers, computer scientists,

physicists, and others in under-

standing and defining physically

transcendent principles of biolog-

ical intelligence.
A core theme of neuromorphic
computing has been to force non-
biological systems to act like
biological systems
As is common among computer scientists

of all stripes, many (perhaps evenmost) AI

scientists have avoided thinking toomuch

about hardware, favoring instead a focus
on abstracted algorithms. This has, of

course, not always been the case,5,6 and

as AI models are being scaled to the limits

(and beyond) of current hardware, there

has been a growing recognition that it is

beneficial to consider the hardware in AI

innovation.4

Historically, there have been at least

three main goals for neuromorphic

computing. Some neuromorphic-com-

puting efforts relate to the goal of con-

structing, at scale, a simulator of the brain

and are motivated by the brain science

such a simulator would enable. Other ef-

forts have aimed to mimic the brain not

necessarily for ultra-efficient computation

but to interact with sensory data, as in the

early efforts to realize analog electronic sil-

icon retinas, cochleas, and so on.7 Finally,

many current efforts are motivated by the

desire to create energy-efficient com-

puters, especially for AI.8

The silicon retina exemplifies neuromor-

phic computing in its glory but also in its

drifts. The silicon retina was jointly inspired

by biology and semiconductor physics—it
is relatively easy and even natural to copy

the logarithmic response of human retinas

in silicon by using transistors. This harmo-

nious translation led to a revolutionary ef-

fect: not only did the silicon retina offer

enhanced dynamic range, but it also ex-

hibited an emergent biological byproduct,

enhancing the edges of the images. It is

easy to view this retrospectively as

the eureka moment for neuromorphic

computing. While the work of Mead and

colleagues on the silicon retina is now

largely remembered for its biological

insight, insight from semiconductor phys-

ics was also crucial. Simply copying

biology does not necessarily confer an

advantage if the facsimile is made on a

substrate with fundamentally different

physical constraints. A good translator

must do more than just convert words,

one by one, from one language to another;

more nuanced consideration is required,

e.g., of grammar, rhythm, cultural context,

etc. A neuromorphic engineer is a trans-

lator of physical language—this requires

intimate consideration of both the source
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material (biology) and the adaptation (the

new hardware’s microscopic physics). It

is, after all, the hardware that offers fea-

tures to exploit, not the inverse.

One important mode inwhich this sort of

‘‘mistranslation’’ has occurred is by trans-

lating biology into idealized mathematical

models and then realizing those idealized

models in new hardware, whether or not

the algorithms implicit to the models are

well suited to the new hardware. Neuro-

morphic computinghas, stubbornly, nearly

always forced the hardware implementa-

tion to realize abstractionssuchas theorig-

inal McCulloch and Pitts neuron with ideal

linear synapses, ideal non-linear neurons

(whether spiking or not), ideal multiply-

and-accumulate operations, etc. Imple-

menting these idealized mathematical

models or operations frequently requires

complicated electronic circuits, operating

electronic devices in carefully controlled,

constrained regimes, and other engineer-

ing trade-offs that reduce efficiency. The

translation of biological information pro-

cessing into mathematics is an important

endeavor—one that has been absolutely

foundational in both theoretical neurosci-

ence and modern AI. But this translation

is not the same translation that must be

performed for neuromorphic hardware

because hardware is not mathematics. In

our view, the forced adherence to specific

mathematical models has limited the

impact of neuromorphic computing.

To be clear, our point is not that

emulating biology specifically is wrong

but rather that forcing physical systems

to do things that do not come naturally

will inevitably reduce performance. This

is true when the unnatural behavior is

copying biology with electronics, but it is

also true for any other idealized function

a physical substrate does not natively,

simply provide. In our view, the ideal

path for neuromorphic computing must

involve a similar intellectual exercise as

estimating the biological intelligence of

extraterrestrials—rather than asking only

what biology has done here on Earth, as

neuromorphic engineers we must ask

what biology would do, given the ‘‘alien’’

physics of our favorite hardware.

Physical constraints define both our
brains and modern AI systems
The brain—a flabby piece of hardware

madeofwater,molecules, ions, etc.—intu-
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itively has fundamentally very different

physical constraints than digital proces-

sors made of solid-state semiconductors.

But how do the microscopic differences

lead to macroscopic differences, i.e., dif-

ferences that would affect the algorithms

or software run on the hardware?

Consider this easy example: transmit-

ting information within the hardware

from one region to another—a necessity

for any information-processing system.

While the brain and semiconductor-

based processors both encode informa-

tion mostly with voltages, the underlying

particles are different—electrons for

semiconductors and ions and neurotrans-

mitters for the brain. The differences in

physics lead to radically different tempo-

ral and spatial scales (Figure 1B).

Hardware has a long history of shaping

the software of AI (Figure 1C). For

example, the advantages of digital elec-

tronic circuits have defined the battle be-

tween machines and humans in chess.

Although the eventual success of ma-

chines still relied on some human exper-

tise, Deep Blue’s algorithm is not what

we would today consider a particularly

brain-like algorithm. Rather, Deep Blue—

based on special-purpose CMOS hard-

ware—competed using an algorithm

suited to the strengths of its hardware.

Machine success in chess (as well as AI

and many, many other domains of mod-

ern human activity) has overwhelmingly

been achieved through a process of soft-

ware better utilizing the compute capabil-

ities of expanding digital electronics, with

algorithms that succeed harnessing this

compute most effectively.2–4

The most recent repeat of this story has

been the hardware influence of graphics

processing units (GPUs) on AI. It is by

now widely appreciated that GPUs are

exceptionally well suited to implementing

deep artificial neural networks (ANNs)

based on large matrix multiplications,

such as multilayer perceptrons, convolu-

tional neural networks, and, most

recently, transformers. This insight, ex-

ploited by the authors of AlexNet in

2012,9 has had echoes in the recent use

of clusters of GPUs (and other specialized

neural network ‘‘accelerators’’), which has

enabled the scaling of training necessary

for today’s large language models.

We think it is incredibly unlikely that this

same story—called ‘‘the bitter lesson’’ by
Sutton3 and ‘‘the hardware lottery’’ by

Hooker4—has been told for the last time.

Rather, we see this as a defining feature

of the evolution of computing.

When examining the state ofmodern AI,

it is tempting to conclude that the greatest

influence on the form of modern AI algo-

rithms has been the underlying physical

constraints of digital integrated circuits

rather than any neuroscience insight.

While we think this is at least partially

true, its exceptions are notable and serve

as important clues for how neuroscience

could help guide a new co-evolution of

hardware and software for AI.

Neural principles have nonetheless
shaped modern AI but only where
they are compatible with the
underlying constraints of physical
hardware
Perhaps the clearest influence of neuro-

science on modern AI is connectionism.

The hypothesis that vast networks of con-

nected neurons can exhibit emergent in-

telligence is today being increasingly

tested. We think it is already fair to

conclude that current large-scale ANNs

exhibit emergent capabilities (how far

this can be pushed remains to be seen).

Other examples of neuroscience con-

cepts can be seen throughout modern

large-scale ANNs, from autoregressive

pretraining of large language models,10

whose next-word prediction resembles

the next-sensation predictive objective of

our brains; to the concept of pretraining

and fine-tuning,10 which resemble the

interplay of evolution, instinct, and

learning; to reinforcement learning, which

resembles the learning (and teaching) hu-

mans experience in early childhood and

beyond. We don’t know whether, in each

case, the first users of these concepts in

AI were explicitly influenced by the neuro-

science literature—but, in principle, they

couldhavebeen.Theseexamples illustrate

the foundational influence ideas from

neuroscience and psychology have in AI.

However, these examples also illustrate

how the influence has primarily been at a

high level: at the level of software rather

than directly guiding the design of AI

hardware.

One reason for this is simply that hard-

ware is expensive to experiment with;

while relatively small-scale neuromorphic

hardware experiments are plentiful in the
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research literature, the large-scale, high-

est-performing hardware that mainstream

AI runs on costs hundreds of millions of

dollars (or more) to develop, so radical ex-

plorations in design are very rare.

The second reason is our main thesis:

the physics of our brains and bodies are

very different from those of any substrate

we are likely to use for present or near-

future computers, including neuromorphic

computers, so for neuroscience insight to

impact how state-of-the-art AI is done, it

cannot be too specific to the physical de-

tails of the implementation in animals. The

past decade has seen billions of dollars of

investment in the development of AI-spe-

cificchips, includingsomewithnovel phys-

ical substrates beyond standard CMOS

electronics, and it seems likely that there

will continue to be large investment in

new hardware for AI. However, this new

hardware will not change our thesis: the

new hardwarewill most likely still be based

on integrated electronics. Photonics may

play a role, but as our introductory thought

experiment suggested, this would push AI

hardware physics even further away from

that of biological brains.

In summary, insights from neurosci-

ence will be most impactful in AI if they

are physics agnostic or are particularly

amenable to implementation with semi-

conductor electronics and photonics

rather than biological matter. AI has

already greatly benefited from discoveries

in neuroscience about the basis of biolog-

ical intelligence, and we believe that there

is much more for AI researchers to adapt

from neuroscience, but it is useful to

keep in mind that the physics of the hard-

ware affects which and how different in-

sights can and should be applied.

Conclusions and looking forward
The rapid expansion of both AI and neuro-

science means that, perhaps more than

ever, neuroscientists have a valuable

role to play in informing the design of syn-

thetic intelligence systems. This includes

both the software and the hardware.

However, the physical capabilities and

constraints of the hardware substrates

used to implement modern AI systems

are not the same as those of the biological

substrates that make up biological intelli-

gence. Analogously to how form deter-

mines function throughout biology, hard-

ware specifics—physics and engineering
design—have constrained the shape of

AI software. While the physics of elec-

tronics is immutable, the design of elec-

tronic hardware is not, and there is

growing interest in engineering special-

purpose hardware for AI.

We think that a key role that neuroscien-

tists can play in the next phase of AI soft-

ware and hardware development is related

to the question posed in our introduction:

what would biological intelligence look

like if it were based on very different micro-

scopic physics than that of our human

brains? Which aspects would remain the

same, and which aspects would be very

different? Answering these questions in-

volves both identifying universal, physics-

agnostic principles of biological intelli-

gence and a deeper understanding of

howour ownbiological intelligence and sil-

icon-electronics-based AI are shaped by

their respective hardware physics.

Our concluding questions, which we—

as non-neuroscientists—think neurosci-

entists could help answer to our great

benefit, are:

(1) what are the universal, physics-

agnostic principles of biological in-

telligence?

(2) which of these principles do you

think have been stubbornly ignored

by earlier generations of AI? Or, if

not ignored, then underexplored

and worth revisiting (either at the

software level, the hardware level,

or—ideally—both)?

(3) conversely, which principles of

Earthly biological intelligence are

likely to be specific to our specific

biology (and therefore of question-

able use in hardware based on very

different microscopic physics)?

We hope that this essay stimulates

further discussion and engagement

between the neuroscience and neuro-

morphic-computing communities. We

encourage you to get in touch with us

(even, or perhaps especially, if you do not

agree with all we have said here!). Our

plan is toeventually follow thisshortNeuro-

View article with another piece, one that

will attempt to summarize your and our an-

swers. We would be delighted to have you

join us in conversation, as a co-author,

and/or in friendly debate, helping to define

both new directions and new questions for
the intertwined futures of AI, neuromorphic

computing, and neuroscience.
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